Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1997 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Molecular Cloning of SLAP-130, an SLP-76-associated Substrate of the T Cell Antigen Receptor-stimulated Protein Tyrosine Kinases

Authors: David G. Motto; L. Ranee Hendricks-Taylor; Joanne Kamens; Christoph W. Turck; Gary A. Koretzky; M A Musci; Michael Paskind;

Molecular Cloning of SLAP-130, an SLP-76-associated Substrate of the T Cell Antigen Receptor-stimulated Protein Tyrosine Kinases

Abstract

Previous work has demonstrated that SLP-76, a Grb2-associated tyrosine-phosphorylated protein, augments Interleukin-2 promoter activity when overexpressed in the Jurkat T cell line. This activity requires regions of SLP-76 that mediate protein-protein interactions with other molecules in T cells, suggesting that SLP-76-associated proteins also function to regulate signal transduction. Here we describe the molecular cloning of SLAP-130, a SLP-76-associated phosphoprotein of 130 kDa. We demonstrate that SLAP-130 is hematopoietic cell-specific and associates with the SH2 domain of SLP-76. Additionally, we show that SLAP-130 is a substrate of the T cell antigen receptor-induced protein tyrosine kinases. Interestingly, we find that in contrast to SLP-76, overexpression of SLAP-130 diminishes T cell antigen receptor-induced activation of the interleukin-2 promoter in Jurkat T cells and interferes with the augmentation of interleukin-2 promoter activity seen when SLP-76 is overexpressed in these cells. These data suggest that SLP-76 recruits a negative regulator, SLAP-130, as well as positive regulators of signal transduction in T cells.

Keywords

Male, Base Sequence, NFATC Transcription Factors, Molecular Sequence Data, Receptors, Antigen, T-Cell, Nuclear Proteins, Protein-Tyrosine Kinases, Phosphoproteins, Polymerase Chain Reaction, DNA-Binding Proteins, Molecular Weight, Jurkat Cells, Organ Specificity, Humans, Female, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular, Carrier Proteins, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    237
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
237
Top 10%
Top 1%
Top 1%
gold