Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EBioMedicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2015 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2016
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2015
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2015
License: CC BY NC ND
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EBioMedicine
Article . 2015
Data sources: DOAJ
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells

Authors: Premer, Courtney; Blum, Arnon; Bellio, Michael A.; Schulman, Ivonne Hernandez; Hurwitz, Barry E.; Parker, Meela; Dermarkarian, Christopher R.; +4 Authors

Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells

Abstract

Endothelial dysfunction, characterized by diminished endothelial progenitor cell (EPC) function and flow-mediated vasodilation (FMD), is a clinically significant feature of heart failure (HF). Mesenchymal stem cells (MSCs), which have pro-angiogenic properties, have the potential to restore endothelial function. Accordingly, we tested the hypothesis that MSCs increase EPC function and restore flow-mediated vasodilation (FMD).Idiopathic dilated and ischemic cardiomyopathy patients were randomly assigned to receive autologous (n = 7) or allogeneic (n = 15) MSCs. We assessed EPC-colony forming units (EPC-CFUs), FMD, and circulating levels of vascular endothelial growth factor (VEGF) in patients before and three months after MSC transendocardial injection (n = 22) and in healthy controls (n = 10).EPC-colony forming units (CFUs) were markedly reduced in HF compared to healthy controls (4 ± 3 vs. 25 ± 16 CFUs, P < 0.0001). Similarly, FMD% was impaired in HF (5.6 ± 3.2% vs. 9.0 ± 3.3%, P = 0.01). Allogeneic, but not autologous, MSCs improved endothelial function three months after treatment (Δ10 ± 5 vs. Δ1 ± 3 CFUs, P = 0.0067; Δ3.7 ± 3% vs. Δ-0.46 ± 3% FMD, P = 0.005). Patients who received allogeneic MSCs had a reduction in serum VEGF levels three months after treatment, while patients who received autologous MSCs had an increase (P = 0.0012), and these changes correlated with the change in EPC-CFUs (P < 0.0001). Lastly, human umbilical vein endothelial cells (HUVECs) with impaired vasculogenesis due to pharmacologic nitric oxide synthase inhibition, were rescued by allogeneic MSC conditioned medium (P = 0.006).These findings reveal a novel mechanism whereby allogeneic, but not autologous, MSC administration results in the proliferation of functional EPCs and improvement in vascular reactivity, which in turn restores endothelial function towards normal in patients with HF. These findings have significant clinical and biological implications for the use of MSCs in HF and other disorders associated with endothelial dysfunction.

Keywords

Adult, Male, Vascular Endothelial Growth Factor A, Medicine (General), Mesenchymal Stem Cell Transplantation, Transplantation, Autologous, Colony-Forming Units Assay, R5-920, Vasculogenesis, Paracrine Communication, Human Umbilical Vein Endothelial Cells, Humans, Transplantation, Homologous, Vascular endothelium-dependent relaxation, Autografts, Aged, Endothelial Progenitor Cells, Heart Failure, R, Hemodynamics, Nitric oxide, Mesenchymal Stem Cells, Middle Aged, Vasodilation, Case-Control Studies, Regenerative medicine, Medicine, Original Article, Female, Endothelium, Vascular

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 1%
Top 10%
Top 1%
Green
gold