Downloads provided by UsageCounts
Earthworm distributions are poorly known and individual species climatic tolerances, even less so. This paper sets out to use three species with a mainly Anglo-French distribution to test out whether using Maximum Entropy Modelling (Maxent) could be useful when studying earthworm distributions. It also gives an indication of how the likely climatic changes over a 50 year period will affect them. Overall the software seems to give useful information of where across Europe a particular species will thrive, even if not currently recorded there. It gives a real insight into how particular species might be better able to survive longer drier periods than others and which are on the edge of their climatic range already. Maxent modelling was clearly successful in demonstrating that the distributions of the ecologically different earthworm species are affected by a combination of different environmental variables. In the case of the epigeic Satchellius mammalis they are the annual temperature range, the precipitation of the driest month and the mean annual precipitation, for the epi-endogeic Lumbricus festivus they are the precipitation of the driest month, the precipitation of the wettest month and the annual temperature range. For the anecic Lumbricus friendi the most important environmental variables proved to be the annual temperature range, the mean diurnal temperature range and the precipitation seasonality.
annelida, oligochaeta, climate change, Ecology, QL1-991, QL Zoology / állattan, distribution, range shif, Zoology, QH540-549.5
annelida, oligochaeta, climate change, Ecology, QL1-991, QL Zoology / állattan, distribution, range shif, Zoology, QH540-549.5
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 5 | |
| downloads | 6 |

Views provided by UsageCounts
Downloads provided by UsageCounts