Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MTAK: REAL (Library ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modelling of climatic tolerances of three earthworm species; Satchellius mammalis, Lumbricus friendi and Lumbricus festivus using Maximum Entropy Modeling

Authors: Sherlock, Emma; Coates, Matthew; Csuzdi, Csaba;

Modelling of climatic tolerances of three earthworm species; Satchellius mammalis, Lumbricus friendi and Lumbricus festivus using Maximum Entropy Modeling

Abstract

Earthworm distributions are poorly known and individual species climatic tolerances, even less so. This paper sets out to use three species with a mainly Anglo-French distribution to test out whether using Maximum Entropy Modelling (Maxent) could be useful when studying earthworm distributions. It also gives an indication of how the likely climatic changes over a 50 year period will affect them. Overall the software seems to give useful information of where across Europe a particular species will thrive, even if not currently recorded there. It gives a real insight into how particular species might be better able to survive longer drier periods than others and which are on the edge of their climatic range already. Maxent modelling was clearly successful in demonstrating that the distributions of the ecologically different earthworm species are affected by a combination of different environmental variables. In the case of the epigeic Satchellius mammalis they are the annual temperature range, the precipitation of the driest month and the mean annual precipitation, for the epi-endogeic Lumbricus festivus they are the precipitation of the driest month, the precipitation of the wettest month and the annual temperature range. For the anecic Lumbricus friendi the most important environmental variables proved to be the annual temperature range, the mean diurnal temperature range and the precipitation seasonality.

Keywords

annelida, oligochaeta, climate change, Ecology, QL1-991, QL Zoology / állattan, distribution, range shif, Zoology, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 6
  • 5
    views
    6
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
5
6
Green
gold