
pmid: 10570976
Alpha-dystrobrevin is a dystrophin-related protein expressed primarily in skeletal muscle, heart, lung and brain. In skeletal muscle, alpha-dystrobrevin is a component of the dystrophin-associated glycoprotein complex and is localized to the sarcolemma, presumably through interactions with dystrophin and utrophin. Alternative splicing of the alpha-dystrobrevin gene generates multiple isoforms which have been grouped into three major classes: alpha-DB1, alpha-DB2, and alpha-DB3. Various isoforms have been shown to interact with a variety of proteins; however, the physiological function of the alpha-dystrobrevins remains unknown. In the present study, we have cloned a novel alpha-dystrobrevin cDNA encoding a protein (referred to as alpha-DB2b) with a unique 11 amino acid C-terminal tail. Using RT PCR with primers specific to the new isoform, we have characterized its expression in skeletal muscle, heart, and brain, and in differentiating C2C12 muscle cells. We show that alpha-DB2b is expressed in skeletal muscle, heart and brain, and that exons 12 and 13 are alternatively spliced in alpha-DB2b to generate at least three splice variants. The major alpha-DB2b splice variant expressed in adult skeletal muscle and heart contains exons 12 and 13, while in adult brain, two alpha-DB2b splice variants are expressed at similar levels. This is consistent with the preferential expression of exons 12 and 13 in other alpha-dystrobrevin isoforms in skeletal muscle and heart. Similarly, in alpha-DB1 the first 21 nucleotides of exon 18 are preferentially expressed in skeletal muscle and heart relative to brain. We also show that the expression of alternatively spliced alpha-DB2b is developmentally regulated in muscle; during differentiation of C2C12 cells, alpha-DB2b expression switches from an isoform lacking exons 12 and 13 to one containing them. We demonstrate similar developmental upregulation of exons 12, 13, and 18 in alpha-DB1 and of exons 12 and 13 in alpha-DB2a. Finally, we show that alpha-DB2b protein is expressed in adult skeletal muscle, suggesting that it has a functional role in adult muscle. Together, these data suggest that alternatively spliced variants of the new alpha-dystrobrevin isoform, alpha-DB2b, are differentially expressed in various tissues and developmentally regulated during muscle cell differentiation in a fashion similar to that previously described for alpha-dystrobrevin isoforms.
DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Reverse Transcriptase Polymerase Chain Reaction, Myocardium, RNA Splicing, Molecular Sequence Data, Brain, Gene Expression Regulation, Developmental, Membrane Proteins, Cell Differentiation, Cell Line, Cytoskeletal Proteins, Dystrophin-Associated Proteins, Protein Isoforms, Amino Acid Sequence, Cloning, Molecular, Muscle, Skeletal
DNA, Complementary, Base Sequence, Sequence Homology, Amino Acid, Reverse Transcriptase Polymerase Chain Reaction, Myocardium, RNA Splicing, Molecular Sequence Data, Brain, Gene Expression Regulation, Developmental, Membrane Proteins, Cell Differentiation, Cell Line, Cytoskeletal Proteins, Dystrophin-Associated Proteins, Protein Isoforms, Amino Acid Sequence, Cloning, Molecular, Muscle, Skeletal
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
