
pmid: 10833084
Immunocytochemical and autoradiographic techniques were employed to determine the time course of expression of the serotonin (5-HT) transporter (SERT) on thalamocortical afferents in the rat's primary somatosensory cortex (S-I), and to correlate this expression to the transient vibrissae-related patterning of 5-HT immunostaining previously described. In additional in vivo and in vitro experiments, 5-HT and 3H-5-HT were applied directly to the cortices of untreated and 5,7-dihydroxytryptamine-treated (5,7-DHT) rats in order to determine the period during which SERT functions on thalamocortical axons to take up 5-HT. In postnatal rats, SERT immunohistochemistry revealed a somatotopic patterning in S-I that persisted until P-15, which is 6 days after the disappearance of the vibrissae-related 5-HT immunostaining. 3H-citalopram autoradiography revealed a vibrissae-related pattern in layer IV of S-I until at least P-30. Following destruction of raphe-cortical afferents with 5,7-DHT on the day of birth, this binding pattern remained visible until at least P-25, indicating that SERT located on thalamocortical axons is responsible for the 3H-citalopram patterning observed in S-I. Tissue from 5,7-DHT-treated rats that had 5-HT applied directly to their cortices revealed a normal vibrissae-related pattern of 5-HT immunostaining in S-I at P-7 and P-11 but only a faint pattern at P-13 and none at P-14. In addition, 3H-5-HT injected directly into S-I labeled layer IV barrels at P-6 and P-12 but not at P-18. The results of these experiments demonstrate that SERT is expressed by thalamocortical afferents and remains functional long after the vibrissae-related 5-HT immunostaining in cortex disappears.
Male, Serotonin Plasma Membrane Transport Proteins, Afferent Pathways, Aging, Brain Mapping, Serotonin, Membrane Glycoproteins, Membrane Transport Proteins, Nerve Tissue Proteins, Somatosensory Cortex, Rats, Rats, Sprague-Dawley, Animals, Newborn, Thalamic Nuclei, Vibrissae, Animals, Autoradiography, Female, Carrier Proteins
Male, Serotonin Plasma Membrane Transport Proteins, Afferent Pathways, Aging, Brain Mapping, Serotonin, Membrane Glycoproteins, Membrane Transport Proteins, Nerve Tissue Proteins, Somatosensory Cortex, Rats, Rats, Sprague-Dawley, Animals, Newborn, Thalamic Nuclei, Vibrissae, Animals, Autoradiography, Female, Carrier Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
