
pmid: 17313190
The object of the present study is the verification of a new approach to the design of the active truncated forms of enzymes. The method is based on a new way of investigating the protein sequences--the ANalysis of Informational Structure (ANIS). The analysis of informational structure allows to determine the hierarchically organized structures (IDIC-trees) formed by the sites with the Increased Degree of Informational Coordination between residues. The proposed approach involves the consequent removal of the fragments corresponding to the individual IDIC-trees from the wild-type enzyme sequences. The described procedure was applied to the design of the active truncated form of human 1-CYS peroxiredoxin (PrxVI). Two variants of the PrxVI truncated sequences were proposed according to ANIS method. These truncated forms of the enzyme were expressed in E. coli and purified. The respective antioxidant activities were measured. It was shown that one of the truncated recombinant proteins retains more than 90% of the wild-type PrxVI enzymatic activity. According to the results of our study we can assume that ANIS method can be an effective tool for the design of the active truncated forms of the enzymes or the chimeric proteins which combine the enzymatic activities of their wild-type prototypes.
Models, Molecular, Protein Folding, Binding Sites, Peroxiredoxins, Antioxidants, Protein Structure, Secondary, Recombinant Proteins, Peroxidases, Glutamate-Ammonia Ligase, Drug Design, Escherichia coli, Humans, Peroxidase
Models, Molecular, Protein Folding, Binding Sites, Peroxiredoxins, Antioxidants, Protein Structure, Secondary, Recombinant Proteins, Peroxidases, Glutamate-Ammonia Ligase, Drug Design, Escherichia coli, Humans, Peroxidase
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
