Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1980 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Control of guinea pig intestinal electrolyte secretion by a delta-opiate receptor.

Authors: J F, Kachur; R J, Miller; M, Field;

Control of guinea pig intestinal electrolyte secretion by a delta-opiate receptor.

Abstract

The effects of opioids on transepithelial potential difference and short-circuit current across guinea pig ileum stripped of one muscle layer were measured in vitro in Ussing chambers. Opioid peptides such as [DAla2, DLeu5]enkephalin and [DAla2, DMet5]enkephalin, which are primarily agonists at delta-opiate receptors, were able to reduce transepithelial potential difference and short-circuit current at concentrations as low as 1 nM. The narcotic drug etorphine was also very potent in reducing short-circuit current, but fentanyl and morphine, which are primarily agonists at mu-opiate receptors, were almost completely ineffective. Ketocyclazocine was relatively ineffective, and beta-endorphin had intermediate potency. All opioid effects could be reversed by the opiate antagonist naloxone. Somatostatin also reduced short-circuit current, but its effect was not reduced by naloxone. Chloride flux measurements indicated that the effect of etorphine on short-circuit current is associated with an enhancement of active Cl- absorption. The relative effects of opioids in this system suggest that their actions are being mediated by a specific delta-opiate receptor. In contrast, opioid effects on guinea pig intestinal smooth muscle seem to be primarily mediated by a mu-opiate receptor.

Keywords

Morphine, Naloxone, Guinea Pigs, Electric Conductivity, Etorphine, Muscle, Smooth, Membrane Potentials, Fentanyl, Chlorides, Receptors, Opioid, Animals, Female, Endorphins, Intestinal Mucosa

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    157
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
157
Average
Top 1%
Top 1%
bronze