Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioresource Technology
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios

Authors: Shuohui, Shi; Xing, Fan; Xuejie, He; Lei, He; Meng, Cao; Hai, Wang; Jian, Zhou;

Enhanced nitritation/denitritation and potential mechanism in an electrochemically assisted sequencing batch biofilm reactor treating sludge digester liquor with extremely low C/N ratios

Abstract

Nitritation/denitritation is a promising strategy to treat sludge digester liquor but would be unstable and inefficient at extremely low C/N ratios. Here, a novel electrochemically assisted sequencing batch biofilm reactor (E-SBBR) was established to treat synthetic/real sludge digester liquor with decreasing C/N ratios. The results showed that the E-SBBR achieved stable nitritation and appreciable TN removal (>70 %) even at C/N 9h) magnified by electrolysis promoted the robustness of nitritation through efficient nitrite-oxidizing bacteria elimination. Meanwhile, mass balance denoted that heterotrophic denitritation dominated in the enhanced TN removal and relied on carbon supplementation from cell apoptosis/lysis stimulated by electrolysis and high-strength FA, further supported by the recovery of heterotrophic denitrifiers, fermentation bacteria, and relevant functional genes at extremely low C/N ratios. This study provides a novel nitrogen removal approach for the sludge digester liquor treatment.

Related Organizations
Keywords

Bioreactors, Bacteria, Sewage, Nitrogen, Biofilms, Ammonium Compounds, Carbon, Nitrites

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!