
pmid: 36096324
Nitritation/denitritation is a promising strategy to treat sludge digester liquor but would be unstable and inefficient at extremely low C/N ratios. Here, a novel electrochemically assisted sequencing batch biofilm reactor (E-SBBR) was established to treat synthetic/real sludge digester liquor with decreasing C/N ratios. The results showed that the E-SBBR achieved stable nitritation and appreciable TN removal (>70 %) even at C/N 9h) magnified by electrolysis promoted the robustness of nitritation through efficient nitrite-oxidizing bacteria elimination. Meanwhile, mass balance denoted that heterotrophic denitritation dominated in the enhanced TN removal and relied on carbon supplementation from cell apoptosis/lysis stimulated by electrolysis and high-strength FA, further supported by the recovery of heterotrophic denitrifiers, fermentation bacteria, and relevant functional genes at extremely low C/N ratios. This study provides a novel nitrogen removal approach for the sludge digester liquor treatment.
Bioreactors, Bacteria, Sewage, Nitrogen, Biofilms, Ammonium Compounds, Carbon, Nitrites
Bioreactors, Bacteria, Sewage, Nitrogen, Biofilms, Ammonium Compounds, Carbon, Nitrites
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
