Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Novel RING Finger Proteins, Air1p and Air2p, Interact with Hmt1p and Inhibit the Arginine Methylation of Npl3p

Authors: Koichi Inoue; Takayuki Mizuno; Kazuhiro Wada; Masatoshi Hagiwara;

Novel RING Finger Proteins, Air1p and Air2p, Interact with Hmt1p and Inhibit the Arginine Methylation of Npl3p

Abstract

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are involved in the mRNA processing and export and are post-translationally modified by methylation at arginine residues in their arginine-glycine-rich (RGG) domains. We screened the factors that can interact with the RGG domain of Npl3p only in the presence of Hmt1p with the two-hybrid system in Saccharomyces cerevisiae. An isolated clone, YIL079, encodes a novel RING finger protein that was not directly bound to Npl3p but associated with the N terminus of Hmt1p. Thus, we designated the gene product Air1p (arginine methyltransferase-interacting RING finger protein). Air1p inhibited the Hmt1p-mediated methylation of Npl3p in vitro. Overexpression of Air1p repressed the Hmt1p-dependent growth of cells. Since homology searches indicate that the YDL175 gene product has significant identity (45%) with Air1p, we designated the gene AIR2. Air2p also has a RING finger domain and was bound to Hmt1p. Although single disruption of either gene gave no effect on the cell growth, cells lacking Air1p and Air2p grew at an extremely slow rate with accumulated poly(A)(+) RNA in the nucleus. Thus, Air1p and Air2p may affect mRNA transport by regulating the arginine methylation state of heterogeneous nuclear ribonucleoproteins.

Keywords

Protein-Arginine N-Methyltransferases, Saccharomyces cerevisiae Proteins, Base Sequence, Genotype, Molecular Sequence Data, Nuclear Proteins, RNA-Binding Proteins, Saccharomyces cerevisiae, Arginine, Methylation, Recombinant Proteins, Fungal Proteins, Repressor Proteins, Mutagenesis, Site-Directed, ATP-Binding Cassette Transporters, Amino Acid Sequence, Cloning, Molecular, Carrier Proteins, Adaptor Proteins, Signal Transducing, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
gold