Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficiently Shifting Sliding Sleeves in Extended Reach Horizontal Wells with Electric-Line: A Case Study

Authors: Thomas Mauchien; Sharat Kishore; Amanda Olivio; Mostafa Ahmed;

Efficiently Shifting Sliding Sleeves in Extended Reach Horizontal Wells with Electric-Line: A Case Study

Abstract

Abstract Traditional intervention operations with coiled tubing (CT) in extended reach horizontal wells might be difficult to access due to lockup from frictional forces and operational inefficiencies. Using conventional shifting tools requires multiple runs to shift open and close multiple sliding sleeve doors (SSD). This paper is a case study of an electric-line powered shifting intervention operation to shift open an SSD, circulate fluids though the sleeve and into the annulus, and then close and repeat this for another SSD in a long horizontal well—all in a single run. The paper discusses the different methods that can be used to efficiently seek and latch onto the shifting profiles using a tractor, wireline cable, and the shifting tool itself with an inchworm motion. The electric-line shifting tool monitored and verified the opening and closing of the sleeves in real time using its onboard sensors. These techniques were effectively deployed in multiple wells that required the annulus to be displaced with fluid after running smart completions. The completions were installed in the well with the SSDs in a closed position, and the shifting intervention consisted in opening the SSD, pumping fluids through the sleeve, and closing the SSD. The tool was anchored in place in the wellbore during the entire circulating operation, and the SSD was subsequently closed. This operation was then repeated on the second SSD in the wellbore, and the entire operation was completed in a single run. Also, no additional caliper run was needed as the shifting tool verified the position of the SSDs. These methods were used in a long horizontal well with the help of real-time measurements. The tool measurements identified if the SSDs were in open or closed position or anywhere in-between. The shifting tool provided confirmation via its measurements that the sleeve was not partially open. This was particularly important when pumping fluid through the annulus to achieve the maximum flow through the sleeve. Operating using electric-line was extremely efficient and eliminated the need to perform multiple runs, thus achieving time savings on the rig. This is the first time that a paper discusses the different seek methods that can be used for carrying out a electric-line mechanical intervention operation. It represents a novel method using a shifting tool as a caliper to probe and measure the completion inner diameter changes while seeking for the profile. It provides a valuable method for reliably and confidently locating and latching onto a shifting profile. Finally, this is the first time that a paper correlates the theoretical mechanics of shifting a sliding sleeve with consistent results from system integration tests and downhole measurements from the real job.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!