Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PRX Quantumarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PRX Quantum
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PRX Quantum
Article . 2023
Data sources: DOAJ
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Symmetry of Open Quantum Systems: Classification of Dissipative Quantum Chaos

Authors: Kohei Kawabata; Anish Kulkarni; Jiachen Li; Tokiro Numasawa; Shinsei Ryu;

Symmetry of Open Quantum Systems: Classification of Dissipative Quantum Chaos

Abstract

We develop a theory of symmetry in open quantum systems. Using the operator-state mapping, we characterize symmetry of Liouvillian superoperators for the open quantum dynamics by symmetry of operators in the double Hilbert space and apply the 38-fold internal-symmetry classification of non-Hermitian operators. We find rich symmetry classification due to the interplay between symmetry in the corresponding closed quantum systems and symmetry inherent in the construction of the Liouvillian superoperators. As an illustrative example of open quantum bosonic systems, we study symmetry classes of dissipative quantum spin models. For open quantum fermionic systems, we develop the $\mathbb{Z}_4$ classification of fermion parity symmetry and antiunitary symmetry in the double Hilbert space, which contrasts with the $\mathbb{Z}_8$ classification in closed quantum systems. We also develop the symmetry classification of open quantum fermionic many-body systems -- a dissipative generalization of the Sachdev-Ye-Kitaev (SYK) model described by the Lindblad master equation. We establish the periodic tables of the SYK Lindbladians and elucidate the difference from the SYK Hamiltonians. Furthermore, from extensive numerical calculations, we study its complex-spectral statistics and demonstrate dissipative quantum chaos enriched by symmetry.

36 pages, 21 figures, 10 tables

Keywords

High Energy Physics - Theory, Quantum Physics, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Physics, QC1-999, FOS: Physical sciences, Mathematical Physics (math-ph), QA76.75-76.765, Condensed Matter - Strongly Correlated Electrons, High Energy Physics - Theory (hep-th), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Computer software, Quantum Physics (quant-ph), Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
gold