
pmid: 15182730
Phospholipase C (PLC)gamma and phospholipase D (PLD) play pivotal roles in the signal transduction required for various cellular responses, including cell proliferation and differentiation. Dendritic cells (DCs), which are professional antigen-presenting cells, can be generated from human monocytes by stimulating the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 4 (IL-4). We investigated whether PLCgamma and PLD expression levels can be changed during the differentiation of the human monocytes into DCs. The enzymatic activity and protein level of PLC gamma1 were significantly increased in the human monocyte-derived DCs by GM-CSF/IL-4, but the protein levels of PLC gamma2 were unaltered. Moreover, the enzymatic activity and protein level of PLD1b and PLD2 were up-regulated during the differentiation of human monocytes to DCs, but those of PLD1a were not changed. A higher phagocytic activity of DCs was found to be correlated with the up-regulations of PLCgamma1 and PLD, and the phagocytic activity of DCs was inhibited by a PLC-specific inhibitor (U73122) and by a phosphatidic acid acceptor (n-butanol), but to be increased by phosphatidic acid. Thus, suggesting that PLC and PLD participate in the process. This study suggests that the up-regulations of PLCgamma1 and PLD are accompanied by the differentiation of monocytes into DCs, which results in increased phagocytic activity.
Phospholipase C gamma, Granulocyte-Macrophage Colony-Stimulating Factor, Cell Differentiation, Dendritic Cells, Glycerophospholipids, Monocytes, Up-Regulation, Phagocytosis, Type C Phospholipases, Phospholipase D, Humans, Interleukin-4, Cells, Cultured, Signal Transduction
Phospholipase C gamma, Granulocyte-Macrophage Colony-Stimulating Factor, Cell Differentiation, Dendritic Cells, Glycerophospholipids, Monocytes, Up-Regulation, Phagocytosis, Type C Phospholipases, Phospholipase D, Humans, Interleukin-4, Cells, Cultured, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
