
Non-stationary MHD interaction of a horizontal magnetic field with a three-dimensional cellular convection is studied by means of computational methods and methods of mean field electrodynamics.For a given magnetic field drop across the convective layer, the rate of magnetic flux penetration through this layer is characterized by two integral coefficients: the first one describing the topological pumping effect arises from the antisymmetric part of the α-effect, while the second coefficient accounts for the enhancement of the effective diffusion due to the convective motions. In the magnetic-Reynolds-number range studied (−5 [les ] Rm [les ] 5) these coefficients are found to be, correspondingly, odd and even functions of Rm only. The net magnetic flux escape rate into vacuum decreases at Rm > 2·2 when compared with a case of a layer without cellular motions. Here the topological pumping prevails not only over the convective enhancement of diffusion but begins to suppress even the background diffusion action.Thus, the asymmetry in the transport properties of cellular motion is again demonstrated, and their difference from those of random turbulence is identified.
Diffusion and convection, transport properties, Applications to the sciences, non-stationary, three-dimensional cellular convection, Magnetohydrodynamics and electrohydrodynamics
Diffusion and convection, transport properties, Applications to the sciences, non-stationary, three-dimensional cellular convection, Magnetohydrodynamics and electrohydrodynamics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
