Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistry and Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry and Biophysics Reports
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry and Biophysics Reports
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantum information teleportation through biological wires, gravitational micro-bio-holes and holographic micro-bio-systems: A hypothesis

Authors: Massimo Fioranelli; Alireza Sepehri; Dana Flavin; Maria Grazia Roccia; Aroonkumar Beesham;

Quantum information teleportation through biological wires, gravitational micro-bio-holes and holographic micro-bio-systems: A hypothesis

Abstract

Biological systems like cells, bacteria, chloroplasts and other micro-organisms could exchange quantum particles like electrons, photons and gravitational waves and have large distant information teleportation. This is because that their DNAs and membranes are formed from quantum particles like electrons and protons and by their motions, some currents and waves are emerged. These waves have the main role in information teleportation. There are different methods which could be used for quantum information teleportation in biological system. Some of these mechanisms are: 1. Microbes, micro-bubbles and some other biological molecules like to form some biological lines specially near the cellular gates. Also, some biological lines may be formed between two cells. These biological lines could play the role of wires which transmit information from a place to another one. For example, some signatures of this quantum information teleportation could be seen in biological lines which are emerged near the plant cell walls or gates or close to chloroplasts. Chloroplasts shoot some spinors which maybe confined within the micro-bubbles or absorb by microbes. These bubbles and microbes may join to each other and form some biological lines which may be strengthen from a plant cell to another. These biological lines could be seen near the plant cell walls or on a metal which connects two parts of a leaf. 2. Some another signatures of "quantum photon exchange or quantum information teleportation" could be seen between microbes under the objective lenses and macro-objects on the eye lenses of a light microscope. It seems that as microscope make big images from microbes for us, produce small pictures of macro-objects for microbes such as they could diagnose them and interact with them. This property could be used in controlling microbes. 3. Another way for controlling microbes is using of virtual shapes which are induced by a special light source. For example, using a multi-gonal lamp, one can induce multi-gonal shape within the micro-bubbles. Also, this special lamp could force microbes and micro-bubbles to build multi-gonal colonies on a metal-glass slide. Maybe, by using this property, one can build a light source with the shape of anti-microbial matter and induce anti-microbial property within micro-bubbles. 4. Another main way for quantum teleportation is using of gravitational holes which may be emerged by increasing concentration of microbes and heavy cells in some points. These holes absorb microbes and micro-bubbles and conduct them to the heavy cells. Usually, there are some white holes near these dark holes which as a proposal, one can assume that these white holes are another end of gravitational holes and emit photons which are entered from dark end. 5. And finally, a very main mechanism for quantum information teleportation with microbes and controlling them is using of a holography and inducing virtual microbes and biological molecules in biological systems. For example, by a combinations of two lights with different colors under a light microscope in a dark room, one may induce some non-virtual microbes in biological systems such as each microbe interacts with a virtual microbe. This is because that light waves take photos of microbes, collide with lenses of microscopes and return to the slide and form virtual microbes or biological molecules. This technique could be used in curing diseases. Although, results of our experiments show the correctness of these mechanisms and theories, however, for the moment, we propose them only as a proposal and hypothesis and hope that other scientists do similar experiments. Also, some of our experiments may be at preliminary stages; however they could be used as a hypothesis, proposal and guidance.

Related Organizations
Keywords

Chloroplasts, QH301-705.5, DNA, QD415-436, Biochemistry, Imaging, Wire, Micro-organisms, Plant cells, Biology (General), Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold