Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2014 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Cysteine-rich Region of Type VII Collagen Is a Cystine Knot with a New Topology

Authors: Henrik Wegener; Karsten Seeger; Hauke Paulsen;

The Cysteine-rich Region of Type VII Collagen Is a Cystine Knot with a New Topology

Abstract

Collagens are a group of extracellular matrix proteins with essential functions for skin integrity. Anchoring fibrils are made of type VII collagen (Col7) and link different skin layers together: the basal lamina and the underlying connective tissue. Col7 has a central collagenous domain and two noncollagenous domains located at the N and C terminus (NC1 and NC2), respectively. A cysteine-rich region of hitherto unknown function is located at the transition of the NC1 domain to the collagenous domain. A synthetic model peptide of this region was investigated by CD and NMR spectroscopy. The peptide folds into a collagen triple helix, and the cysteine residues form disulfide bridges between the different strands. The eight cystine knot topologies that are characterized by exclusively intermolecular disulfide bridges have been analyzed by molecular modeling. Two cystine knots are energetically preferred; however, all eight disulfide bridge arrangements are essentially possible. This novel cystine knot is present in type IX collagen, too. The conserved motif of the cystine knot is CX3CP. The cystine knot is N-terminal to the collagen triple helix in both collagens and therefore probably impedes unfolding of the collagen triple helix from the N terminus.

Related Organizations
Keywords

Models, Molecular, Collagen Type VII, Magnetic Resonance Spectroscopy, Circular Dichroism, Molecular Sequence Data, Collagen Type IX, Recombinant Proteins, Protein Structure, Tertiary, Mice, Consensus Sequence, Animals, Electrophoresis, Polyacrylamide Gel, Amino Acid Sequence, Cysteine, Cystine Knot Motifs, Disulfides, Peptides, Sequence Alignment, Conserved Sequence

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
gold