Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A real-time learning algorithm for two-hidden-layer feedforward networks

Authors: null Qin-Yu Zhu; null Guang-Bin Huang; null Chee-Kheong Siew;

A real-time learning algorithm for two-hidden-layer feedforward networks

Abstract

In some practical applications, the request of time complexity is more rigidder than space complexity. However, current neural networks seem far from the stardard of real-time applications. In the previous paper of Huang[1], it has been proved in a novel constructive method that two-hidden-layer feedforward networks (TLFNs) with 2√(m+2)N(«N) hidden neurons can learn any N distinct samples (X i ,t i ) with any arbitrarily small error, where m in the required number of output neurons. On the theoritical basis of previous results[1], this paper will introduce an improved constructive method of TLFN with real-time learning capacity. The results shown in this paper will prove that both the training and generalization errors of the new TLFN can reach arbitrarily small values if sufficient distinctive training samples are provided. Additionally, this paper will use some experimental results to show the comparison of learning time with traditional gradient descent based learning. methods such as back-propogation (BP) algorithm. The learning algorithm for two-hidden-layer feedforward neural net-works is able to learn any set of oberservations just in one short iteration (one instead of large number of learning epoches) with acceptable learning and testing accuracy

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!