
Abstract Background The mitotic exit network (MEN) is a group of proteins that form a signaling cascade that is essential for cells to exit mitosis in Saccharomyces cerevisiae. The MEN has also been implicated in playing a role in cytokinesis. Two components of this signaling pathway are the protein kinase Dbf2 and its binding partner essential for its kinase activity, Mob1. The components of MEN that act upstream of Dbf2-Mob1 have been characterized, but physiological substrates for Dbf2-Mob1 have yet to be identified. Results Using a combination of peptide library selection, phosphorylation of opitmal peptide variants, and screening of a phosphosite array, we found that Dbf2-Mob1 preferentially phosphorylated serine over threonine and required an arginine three residues upstream of the phosphorylated serine in its substrate. This requirement for arginine in peptide substrates could not be substituted with the similarly charged lysine. This specificity determined for peptide substrates was also evident in many of the proteins phosphorylated by Dbf2-Mob1 in a proteome chip analysis. Conclusion We have determined by peptide library selection and phosphosite array screening that the protein kinase Dbf2-Mob1 preferentially phosphorylated substrates that contain an RXXS motif. A subsequent proteome microarray screen revealed proteins that can be phosphorylated by Dbf2-Mob1 in vitro. These proteins are enriched for RXXS motifs, and may include substrates that mediate the function of Dbf2-Mob1 in mitotic exit and cytokinesis. The relatively low degree of sequence restriction at the site of phosphorylation suggests that Dbf2 achieves specificity by docking its substrates at a site that is distinct from the phosphorylation site
570, Saccharomyces cerevisiae Proteins, Proteome, Molecular Sequence Data, Protein Array Analysis, Saccharomyces cerevisiae, Substrate Specificity, Peptide Library, Amino Acid Sequence, Protein Kinases, Research Article
570, Saccharomyces cerevisiae Proteins, Proteome, Molecular Sequence Data, Protein Array Analysis, Saccharomyces cerevisiae, Substrate Specificity, Peptide Library, Amino Acid Sequence, Protein Kinases, Research Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
