Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling

Authors: Irinka Castanon; Mary K. Baylies; Ruben Artero;

The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling

Abstract

Hibris (Hbs) is a transmembrane immunoglobulin-like protein that shows extensive homology to Drosophila Sticks and stones (Sns) and human kidney protein Nephrin. Hbs is expressed in embryonic visceral, somatic and pharyngeal mesoderm among other tissues. In the somatic mesoderm, Hbs is restricted to fusion competent myoblasts and is regulated by Notch and Ras signaling pathways. Embryos that lack or overexpress hbs show a partial block of myoblast fusion, followed by abnormal muscle morphogenesis. Abnormalities in visceral mesoderm are also observed. In vivo mapping of functional domains suggests that the intracellular domain mediates Hbs activity. Hbs and its paralog, Sns, co-localize at the cell membrane of fusion-competent myoblasts. The two proteins act antagonistically: loss of sns dominantly suppresses the hbs myoblast fusion and visceral mesoderm phenotypes, and enhances Hbs overexpression phenotypes. Data from a P-homed enhancer reporter into hbs and co-localization studies with Sns suggest that hbs is not continuously expressed in all fusion-competent myoblasts during the fusion process. We propose that the temporal pattern of hbs expression within fusion-competent myoblasts may reflect previously undescribed functional differences within this myoblast population.

Related Organizations
Keywords

Embryo, Nonmammalian, Base Sequence, Receptors, Notch, Sequence Homology, Amino Acid, Molecular Sequence Data, Gene Expression Regulation, Developmental, Immunoglobulins, Membrane Proteins, Cell Differentiation, Cell Fusion, Mesoderm, Mutation, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Amino Acid Sequence, Cloning, Molecular, Muscle, Skeletal, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!