
arXiv: 2103.16019
Face photo-sketch synthesis and recognition has many applications in digital entertainment and law enforcement. Recently, generative adversarial networks (GANs) based methods have significantly improved the quality of image synthesis, but they have not explicitly considered the purpose of recognition. In this paper, we first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network. It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose, which are important for identity recognition. Furthermore, we develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN and enhances the recognition model by the triplet loss of the generated and real samples. Extensive experiments are performed on both photo-tosketch and sketch-to-photo tasks using the widely used CUFS and CUFSF databases. The results show that the proposed method performs better than several state-of-the-art methods in terms of both synthetic image quality and photo-sketch recognition accuracy.
36 pages, 11 figures
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 102 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
