Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Литьë и металлургияarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Литьë и металлургия
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Influence of abrasive materials on the quality of analytical surfaces during preparation of samples for spectral analysis

Authors: M. V. Lagoyskaya;

Influence of abrasive materials on the quality of analytical surfaces during preparation of samples for spectral analysis

Abstract

The article considers the possibility of contamination of the surface of steel samples with abrasive materials when preparing samples for determining the chemical composition on optical emission spectrometers.The standards for sample preparation methods describe in detail the methods of surface treatment, the materials used, and the requirements for the quality of the analyzed surface. The sample surface can be milled or sanded using various abrasive materials. In practice, the laboratory found that the surface of samples during sample preparation is contaminated with aluminum and calcium.In order to determine how the contamination of analytical surfaces occurs, the chemical composition of all materials used in the preparation of samples was studied, and an experiment was conducted to establish a method for preparing the sample surface that does not lead to contamination of the surface with aluminum and calcium. For the experiment, three standard samples of steel composition were selected with certified values of the mass fraction of aluminum and calcium in different ranges. The surface of each sample was processed in three ways and optical emission spectral analysis was performed on each analytical surface at five points to determine the value of the mass fraction of aluminum and calcium and to estimate the spread of the results obtained. As a result of tests it was found that by grinding the sample surface by using abrasive white corundum and abrasive paper grit P40 is the surface contamination of the analyzed sample in aluminum and calcium, therefore, when determining the mass fraction of aluminium and calcium in steel are required for surface preparation to use the method of milling.

Keywords

mass fraction of aluminum, Mining engineering. Metallurgy, sample preparation, mass fraction of calcium, milling, TN1-997, chemical composition, optical emission spectrometer, grinding, spectral analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold