Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leucine-764 near the extreme C-terminal end of carnitine palmitoyltransferase I is important for activity

Authors: Jia, Dai; Hongfa, Zhu; Gebre, Woldegiorgis;

Leucine-764 near the extreme C-terminal end of carnitine palmitoyltransferase I is important for activity

Abstract

Muscle carnitine palmitoyltransferase I (M-CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of L-carnitine. To determine the role of the C-terminal region of M-CPTI in enzyme activity, we constructed a series of deletion and substitution mutants. The mutants were expressed in the yeast Pichia pastoris, and the effect of the mutations on M-CPTI activity and malonyl-CoA sensitivity was determined in isolated mitochondria prepared from the yeast strains expressing the wild-type and deletion mutants. Deletion of the last 210, 113, 44, 20, 10, and 9 C-terminal amino-acid residues resulted in an inactive M-CPTI, but deletion of the last 8, 7, 6, and 3 C-terminal residues had no effect on activity, demonstrating that leucine-764 (L764) is essential for catalysis. Substitution of L764 with alanine caused a 40% loss in catalytic activity, but replacement of L764 with arginine resulted in an 84% loss of activity; substitution of L764 with valine had no effect on catalytic activity. The catalytic efficiency for the L764R mutant decreased by 80% for both substrates. Secondary structure prediction of the M-CPTI sequence identified a 21-amino-acid residue, 744-764, predicted to fold into a coiled-coil alpha-helix in the extreme C-terminal region of M-CPTI that may be important for native folding and activity. In summary, our data demonstrate that deletion of L764 or substitution with arginine inactivates the enzyme, suggesting that L764 may be important for proper folding of M-CPTI and optimal activity.

Related Organizations
Keywords

Carnitine O-Palmitoyltransferase, Molecular Sequence Data, Muscle Proteins, Pichia, Malonyl Coenzyme A, Kinetics, Leucine, Humans, Point Mutation, Amino Acid Sequence, Sequence Alignment, Sequence Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!