Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2002 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Maintenance of Double-Stranded Telomeric Repeats as the Critical Determinant for Cell Viability in Yeast Cells Lacking Ku

Authors: Serge Gravel; Raymund J. Wellinger;

Maintenance of Double-Stranded Telomeric Repeats as the Critical Determinant for Cell Viability in Yeast Cells Lacking Ku

Abstract

The Saccharomyces cerevisiae Ku complex, while important for nonhomologous DNA end joining, is also necessary for maintaining wild-type telomere length and a normal chromosomal DNA end structure. Yeast cells lacking Ku can grow at 23 degrees C but are unable to do so at elevated temperatures due to an activation of DNA damage checkpoints. To gain insights into the mechanisms affected by temperature in such strains, we isolated and characterized a new allele of the YKU70 gene, yku70-30(ts). By several criteria, the Yku70-30p protein is functional at 23 degrees C and nonfunctional at 37 degrees C. The analyses of telomeric repeat maintenance as well as the terminal DNA end structure in strains harboring this allele alone or in strains with a combination of other mutations affecting telomere maintenance show that the altered DNA end structure in yeast cells lacking Ku is not generated in a telomerase-dependent fashion. Moreover, the single-stranded G-rich DNA on such telomeres is not detected by DNA damage checkpoints to arrest cell growth, provided that there are sufficient double-stranded telomeric repeats present. The results also demonstrate that mutations in genes negatively affecting G-strand synthesis (e.g., RIF1) or C-strand synthesis (e.g., the DNA polymerase alpha gene) allow for the maintenance of longer telomeric repeat tracts in cells lacking Ku. Finally, extending telomeric repeat tracts in such cells at least temporarily suppresses checkpoint activation and growth defects at higher temperatures. Thus, we hypothesize that an aspect of the coordinated synthesis of double-stranded telomeric repeats is sensitive to elevated temperatures.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, DNA Repair, Guanosine, Telomere-Binding Proteins, DNA Helicases, Temperature, Nuclear Proteins, Antigens, Nuclear, Saccharomyces cerevisiae, Telomere, DNA-Binding Proteins, Repressor Proteins, Blotting, Southern, DNA, Fungal, Ku Autoantigen, Telomerase, Alleles, Cell Division, Gene Deletion, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Average
Top 10%
Top 10%
bronze