Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 2011 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Duodenal Helminth Infection Alters Barrier Function of the Colonic Epithelium via Adaptive Immune Activation

Authors: Chien-wen, Su; Yue, Cao; Jess, Kaplan; Mei, Zhang; Wanglin, Li; Michelle, Conroy; W Allan, Walker; +1 Authors

Duodenal Helminth Infection Alters Barrier Function of the Colonic Epithelium via Adaptive Immune Activation

Abstract

ABSTRACTChronic infection with intestinal helminth parasites is a major public health problem, particularly in the developing world, and can have significant effects on host physiology and the immune response to other enteric infections and antigens. The mechanisms underlying these effects are not well understood. In the current study, we investigated the impact of infection with the murine nematode parasiteHeligmosomoides polygyrus, which resides in the duodenum, on epithelial barrier function in the colon. We found thatH. polygyrusinfection produced a significant increase in colonic epithelial permeability, as evidenced by detection of elevated serum levels of the tracer horseradish peroxidase following rectal administration. This loss of normal barrier function was associated with clear ultrastructural changes in the tight junctions of colonic epithelial cells and an alteration in the expression and distribution of the junctional protein E-cadherin. These parasite-induced abnormalities were not observed in SCID mice but did occur in SCID mice that were adoptively transferred with wild-type T cells, indicating a requirement for adaptive immunity. Furthermore, the helminth-induced increase in gut permeability was not seen in STAT6 knockout (KO) mice. Taken together, the results demonstrate that one of the mechanisms by which helminths exert their effects involves the lymphocyte- and STAT6-dependent breakdown of the intestinal epithelial barrier. This increase in epithelial permeability may facilitate the movement of lumenal contents across the mucosa, thus helping to explain how helminth infection can alter the immune response to enteric antigens.

Related Organizations
Keywords

Mice, Knockout, Mice, Inbred BALB C, Nematospiroides dubius, Colon, Blotting, Western, Adaptive Immunity, Lymphocyte Activation, Mice, Microscopy, Electron, Transmission, Microscopy, Fluorescence, Animals, Female, Lymphocytes, Intestinal Mucosa, Strongylida Infections

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
gold