Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Progress in Neuro-Ps...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Neuro-Psychopharmacology and Biological Psychiatry
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes

Authors: Kyooseob Ha; Kyooseob Ha; Se Hyun Kim; Soon Young Shin; Yeni Kim; Yong Sik Kim; Yong Sik Kim; +1 Authors

Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes

Abstract

Recent evidence has suggested that deficits in glial plasticity contribute to the pathophysiology of depressive disorders. The present study explored early growth response 1 (EGR-1) transcriptional regulation of imipramine-induced glial cell line-derived neurotrophic factor (GDNF) expression in astrocytes. After we observed the induction of GDNF mRNA expression in rat astrocytes in response to imipramine, deletion mutant studies showed that the proximal region between -493 and -114 of the GDNF promoter, which contains three binding sites for EGR-1, was essential for maximal imipramine-induced activation of GDNF promoter. The dose-dependent upregulation of EGR-1 by imipramine, the activation of GDNF by the over-expression of EGR-1 without imipramine and the reduction in the imipramine-induced GDNF mRNA expression after silencing of endogenous EGR-1 demonstrated that EGR-1 is upregulated by imipramine to activate the GDNF promoter. Furthermore, imipramine-induced GDNF mRNA expression was strongly attenuated in primary astrocytes from Egr-1(-/-) mice, and the immunoreactivity to an anti-GDNF antibody in glial fibrillary acidic protein-positive cells was lower in imipramine-treated astrocytes from Egr-1(-/-) mice than in those from Egr-1(+/-) mice. To determine whether mitogen-activated protein kinases (MAPKs) were associated with imipramine-induced EGR-1 expression, we examined the induction of MAPK phosphorylation in response to imipramine. Pretreatment of rat primary astrocytes with the MAPK kinase inhibitor U0126 or the JNK inhibitor SP600125 strongly inhibited imipramine-stimulated EGR-1 expression. In conclusion, we found that imipramine induction of EGR-1 upregulated GDNF in astrocytes in a dose-dependent manner. This upregulation may occur through the MEK/ERK and JNK MAPK pathways, which suggests a new therapeutic mechanism of action for depressive disorders.

Keywords

Mice, Knockout, Imipramine, Microscopy, Confocal, Transcription, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, Antidepressive Agents, Tricyclic, Up-Regulation, Mice, Inbred C57BL, Mice, Astrocytes, Animals, Glial Cell Line-Derived Neurotrophic Factor, Mitogen-Activated Protein Kinases, RNA, Small Interfering, Luciferases, Cells, Cultured, Early Growth Response Protein 1, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!