Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neural Regeneration ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neural Regeneration Research
Article . 2021 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neural Regeneration Research
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neural Regeneration Research
Article . 2021
Data sources: DOAJ
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Protein profiling identified mitochondrial dysfunction and synaptic abnormalities after dexamethasone intervention in rats with traumatic brain injury

Authors: Fei Niu; Bin Zhang; Jie Feng; Xiang Mao; Xiao-Jian Xu; Jin-Qian Dong; Bai-Yun Liu;

Protein profiling identified mitochondrial dysfunction and synaptic abnormalities after dexamethasone intervention in rats with traumatic brain injury

Abstract

Dexamethasone has been widely used after various neurosurgical procedures due to its anti-inflammatory property and the abilities to restore vascular permeability, inhibit free radicals, and reduce cerebrospinal fluid production. According to the latest guidelines for the treatment of traumatic brain injury in the United States, high-dose glucocorticoids cause neurological damage. To investigate the reason why high-dose glucocorticoids after traumatic brain injury exhibit harmful effect, rat controlled cortical impact models of traumatic brain injury were established. At 1 hour and 2 days after surgery, rat models were intraperitoneally administered dexamethasone 10 mg/kg. The results revealed that 31 proteins were significantly upregulated and 12 proteins were significantly downregulated in rat models of traumatic brain injury after dexamethasone treatment. The Ingenuity Pathway Analysis results showed that differentially expressed proteins were enriched in the mitochondrial dysfunction pathway and synaptogenesis signaling pathway. Western blot analysis and immunohistochemistry results showed that Ndufv2, Maob and Gria3 expression and positive cell count in the dexamethasone-treated group were significantly greater than those in the model group. These findings suggest that dexamethasone may promote a compensatory increase in complex I subunits (Ndufs2 and Ndufv2), increase the expression of mitochondrial enzyme Maob, and upregulate synaptic-transmission-related protein Gria3. These changes may be caused by nerve injury after traumatic brain injury treatment by dexamethasone. The study was approved by Institutional Ethics Committee of Beijing Neurosurgical Institute (approval No. 201802001) on June 6, 2018.

Related Organizations
Keywords

Neurology. Diseases of the nervous system, dexamethasone; gria3; maob; mass spectrometry; mitochondrial dysfunction; ndufs2; ndufv2; proteomics; synaptic abnormalities; traumatic brain injury, RC346-429, Research Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
gold