<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 20932477
Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network.
Feedback, Physiological, Cytoplasm, Binding Sites, Saccharomyces cerevisiae Proteins, Time Factors, Casein Kinase I, MAP Kinase Signaling System, Molecular Sequence Data, Membrane Proteins, Cell Biology, Saccharomyces cerevisiae, Glucose, Mutation, Phosphoprotein Phosphatases, Protein Interaction Domains and Motifs, Amino Acid Sequence, Mitogen-Activated Protein Kinases, Phosphorylation, Molecular Biology, Protein Binding
Feedback, Physiological, Cytoplasm, Binding Sites, Saccharomyces cerevisiae Proteins, Time Factors, Casein Kinase I, MAP Kinase Signaling System, Molecular Sequence Data, Membrane Proteins, Cell Biology, Saccharomyces cerevisiae, Glucose, Mutation, Phosphoprotein Phosphatases, Protein Interaction Domains and Motifs, Amino Acid Sequence, Mitogen-Activated Protein Kinases, Phosphorylation, Molecular Biology, Protein Binding
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 77 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |