Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Nutrition ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Nutrition & Food Research
Article . 2017 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Nutrition & Food Research
Article
License: CC BY NC
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High salt diet impairs memory‐related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression

Authors: Ge, Qian; Wang, Zhengjun; Wu, Yuwei; Huo, Qing; Qian, Zhaoqiang; Tian, Zhongmin; Ren, Wei; +2 Authors

High salt diet impairs memory‐related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression

Abstract

ScopeA high salt (HS) diet is detrimental to cognitive function, in addition to having a role in cardiovascular disorders. However, the method by which an HS diet impairs cognitive functions such as learning and memory remains open.Methods and resultsIn this study, we found that mice on a 7 week HS diet demonstrated disturbed short‐term memory in an object‐place recognition task, and both 4 week and 7 week HS treatments impaired long‐term memory, as evidenced in a fear conditioning test. Mechanistically, the HS diet inhibited memory‐related long‐term potentiation (LTP) in the hippocampus, while also increasing the levels of reactive oxygen species (ROS) in hippocampal cells and downregulating the expression of synapsin I, synaptophysin, and brain‐derived neurotrophic factor in specific encephalic region.ConclusionThis suggests that oxidative stress or synaptic protein/neurotrophin deregulation was involved in the HS diet‐induced memory impairment. Thus, the present study provides novel insights into the mechanisms of memory impairment caused by excessive dietary salt, and underlined the importance of controlling to salt absorb quantity.

Related Organizations
Keywords

Blood Glucose, Male, Neuronal Plasticity, Brain-Derived Neurotrophic Factor, Down-Regulation, Alanine Transaminase, Synapsins, Hippocampus, Diet, Mice, Inbred C57BL, Mice, Oxidative Stress, Cholesterol, Cognition, Memory, Animals, Learning, Aspartate Aminotransferases, Sodium Chloride, Dietary, Research Articles, Triglycerides

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%
Green
hybrid