Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1991 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Purification and functional characterization of membranes derived from the rough endoplasmic reticulum of Saccharomyces cerevisiae

Authors: C M, Sanderson; D I, Meyer;

Purification and functional characterization of membranes derived from the rough endoplasmic reticulum of Saccharomyces cerevisiae

Abstract

Isolation and biochemical analysis of the components involved in protein translocation into the rough endoplasmic reticulum (ER) requires starting material highly enriched in membranes derived from this organelle. We have chosen to study the yeast Saccharomyces cerevisiae in order to profit from the ease of genetic manipulation. To date, however, no efficient scheme has been devised that allows the purification of functional rough ER-derived membranes from yeast, largely because proteins have yet to be identified that are rough ER-specific. In the experiments described here, we expressed the human rough ER marker ribophorin I to facilitate the analysis of subcellular fractionation. We found that the endoplasmic reticulum of yeast could be separated into two distinct domains by fractionation on continuous sucrose gradients. This procedure revealed a bimodal distribution of ER markers. The yeast homologue of the heavy chain-binding protein, BiP (encoded by the KAR2 gene), and the product of the SEC62 gene were present in two fractions having equilibrium densities of 1.146 and 1.192 g/ml, respectively. In contrast, our analysis showed that preprotein translocation activity and retention of the rough ER-specific protein ribophorin I were specific only to the membrane fraction with an equilibrium density of 1.192 g/ml. To prepare fractions highly enriched in translocation competent rough ER-derived membranes for analysis, we developed a density shift fractionation scheme that optimizes the purity of membranes containing human ribophorin I. Membranes obtained by this method were found to possess the majority of the appropriate functional markers, including ATP-independent preprotein binding, ribosome binding, and post-translational translocation. Mitochondria, the major contaminant of the 1.192 g/ml fraction, were significantly depleted in density-shifted membrane populations.

Related Organizations
Keywords

Membrane Proteins, Intracellular Membranes, Saccharomyces cerevisiae, Cell Fractionation, Endoplasmic Reticulum, Fungal Proteins, Molecular Weight, Microscopy, Electron, Centrifugation, Density Gradient, Electrophoresis, Polyacrylamide Gel, Ribosomes

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Top 10%
Average
gold