
AbstractVisual acuity is better for vertical and horizontal compared to other orientations. This cross-species phenomenon is often explained by “efficient coding”, whereby more neurons show sharper tuning for the orientations most common in natural vision. However, it is unclear if experience alone can account for such biases. Here, we measured orientation representations in a convolutional neural network, VGG-16, trained on modified versions of ImageNet (rotated by 0°, 22.5°, or 45° counter-clockwise of upright). Discriminability for each model was highest near the orientations that were most common in the network’s training set. Furthermore, there was an over-representation of narrowly tuned units selective for the most common orientations. These effects emerged in middle layers and increased with depth in the network. Biases emerged early in training, consistent with the possibility that non-uniform representations may play a functional role in the network’s task performance. Together, our results suggest that biased orientation representations can emerge through experience with a non-uniform distribution of orientations, supporting the efficient coding hypothesis.
Neurons, Orientation, Humans, Neural Networks, Computer, Article, Vision, Ocular, Visual Cortex
Neurons, Orientation, Humans, Neural Networks, Computer, Article, Vision, Ocular, Visual Cortex
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
