
Let K be a bounded, open convex set in euclidean n-space Rn, symmetric in the origin 0. Further let L be a lattice in Rn containing 0 and put extended over all positive real numbers ui for which uiK contains i linearly independent points of L. Denote the Jordan content of K by V(K) and the determinant of L by d(L). Minkowski's second inequality in the geometry of numbers states that Minkowski's original proof has been simplified by Weyl [6] and Cassels [7] and a different proof hasbeen given by Davenport [1].
Minkowski's second inequality, Lattices and convex bodies (number-theoretic aspects)
Minkowski's second inequality, Lattices and convex bodies (number-theoretic aspects)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
