Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mineralsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Minerals
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study on the Improved Method for Calculating Traveltime and Raypath of Multistage Fast Marching Method

Authors: Qiong Wu; Hong-Ze Mi; Yong-Bo Li; Yan-Gui Li;

Study on the Improved Method for Calculating Traveltime and Raypath of Multistage Fast Marching Method

Abstract

The traditional Fast Marching Method (FMM) based on the finite-difference scheme can solve the traveltime of first arrivals; however, the accuracy and efficiency of FMM are usually affected by the finite-difference schemes and grid size. The Vidale finite-difference scheme and double-grid technology are adopted to replace the traditional first-order and second-order finite-difference schemes in this paper to improve the computation accuracy and efficiency. The traditional FMM does not provide the corresponding raypath calculation methods, and in view of the interoperability of FMM and the linear travel time interpolation (LTI) method, we introduce the linear interpolation method into FMM ray tracing to compute the raypath and take into consideration the secondary source located inside the grid cell to improve the accuracy and stability of the raypath calculation. With these measures and the application of the multistage approach, we successfully completed the improved Multistage FMM (MFMM) ray tracing, which can track first arrivals and any type of primary and multiple reflection waves. Through the theoretical and actual field model tests, the computation accuracy and efficiency of the improved MFMM are proven to be higher than that under traditional first-order and second-order finite-difference schemes, the correctness and effectiveness of the interpolation method for raypath calculation are verified, and the improved MFMM has demonstrated good adaptability and stability for complex models. The improvements for the MFMM in this paper are successfully applied in two-dimensional cases and need to be extended to three-dimensional situations.

Related Organizations
Keywords

fast marching method; finite-difference; linear interpolation; multistage approach; ray tracing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold