Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Vascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Role of L- and T-Type Calcium Channels in Local and Remote Calcium Responses in Rat Mesenteric Terminal Arterioles

Authors: Leanne L. Cribbs; Masahiro Oike; Yushi Ito; Ryuji Inoue; Lars Juhl Jensen; Lars Juhl Jensen; Niels Henrik Holstein-Rathlou; +1 Authors

The Role of L- and T-Type Calcium Channels in Local and Remote Calcium Responses in Rat Mesenteric Terminal Arterioles

Abstract

<i>Background/Aims:</i> The roles of intercellular communication and T-type versus L-type voltage-dependent Ca<sup>2+</sup> channels (VDCCs) in conducted vasoconstriction to local KCl-induced depolarization were investigated in mesenteric arterioles. <i>Methods:</i> Ratiometric Ca<sup>2+</sup> imaging (R) using Fura-PE3 with micro-ejection of depolarizing KCl solution and VDCC blockers, and immunohistochemical and RT-PCR techniques were applied to isolated rat mesenteric terminal arterioles (n = 71 from 47 rats; intraluminal diameter: 24 ± 1 μm; length: 550–700 μm). <i>Results:</i> Local application of KCl (at 0 μm) led to local (ΔR = 0.54) and remote (ΔR = 0.17 at 500 μm) increases in intracellular Ca<sup>2+</sup>. Remote Ca<sup>2+</sup> responses were inhibited by the gap junction uncouplers carbenoxolone and palmitoleic acid. Ca<sub>V</sub>1.2, Ca<sub>V</sub>3.1 and Ca<sub>V</sub>3.2 channels were immunolocalized in vascular smooth muscle cells and Ca<sub>V</sub>3.2 in adjacent endothelial cells. Local and remote Ca<sup>2+</sup> responses were inhibited by bath application of L- and T-type blockers [nifedipine, NNC 55-0396 and R(–)-efonidipine]. Remote Ca<sup>2+</sup> responses (500 μm) were not affected by abolishing Ca<sup>2+</sup> entry at an intermediate position on the arterioles (at 200–300 μm) using micro-application of VDCC blockers. <i>Conclusion:</i> Both L- and T-type channels mediate Ca<sup>2+</sup> entry during conducted vasoconstriction to local KCl in mesenteric arterioles. However, these channels do not participate in the conduction process per se.

Keywords

Male, Time Factors, Calcium Channels, L-Type, Gap Junctions, Calcium Channel Blockers, Mesenteric Arteries, Potassium Chloride, Rats, Rats, Sprague-Dawley, Arterioles, Calcium Channels, T-Type, Vasoconstriction, Animals, Vasoconstrictor Agents, Calcium Signaling, RNA, Messenger, Sodium Channel Blockers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
bronze