Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Antimicrobial Agents...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Antimicrobial Agents and Chemotherapy
Article . 2017 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens

Authors: Marta Gomarasca; Thaynan F. C. Martins; Lilo Greune; Philip R. Hardwidge; M. Alexander Schmidt; Christian Rüter;

Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens

Abstract

ABSTRACT Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat ( trans -activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri . Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens.

Related Organizations
Keywords

Anti-Infective Agents, Gram-Negative Bacteria, Escherichia coli, Salmonella enterica, Cell-Penetrating Peptides, Gentamicins, Shigella flexneri

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
bronze