Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abstract 203: Cardiomyocyte T-tubule Membrane Turns Over, Releasing BIN1 Containing Microparticles into Blood

Authors: Bing Xu; Ying Fu; TingTing Hong;

Abstract 203: Cardiomyocyte T-tubule Membrane Turns Over, Releasing BIN1 Containing Microparticles into Blood

Abstract

Bridging integrator 1 (BIN1) is a cardiac muscle protein that folds cardiomyocyte T-tubule membrane. BIN1 is intrinsic to cardiac health, and is reduced in acquired heart failure. Interestingly, we have found that BIN1 is also blood available, and that plasma BIN1 correlates with cardiac function, suggesting cardiac origin of plasma BIN1. We found that low plasma BIN1 correlates with failing muscle and predicts ventricular arrhythmia. However, the paradigm does not exist for an intracellular membrane associate cardiomyocyte protein to be homeostatically turned over into blood. In this study, using a mouse model with cardiac specific deletion of Bin1 gene, we identified with biochemical techniques that plasma BIN1 levels directly correlate with cardiac tissue BIN1 levels, indicating cardiac origin. Furthermore, investigations using both super-resolution fluorescent imaging and flow cytometry analysis revealed that adult ventricular cardiomyocytes constantly release BIN1 into blood via membrane microparticle production. Microparticles are small membrane vesicles shed from plasma membrane of a variety of cell types including platelets, leukocytes, and endothelial cells. Using super-resolution three-dimensional stochastic optical reconstruction microscopy (3D-STORM), we found similar to the blood cells, isolated adult mouse cardiomyocytes release Annexin V positive microparticles with diameters ranging between 0.1 to 1.0 μm. These microparticles also carry BIN1 protein. Flow cytometry was also used to detect and quantify microparticles <1.0 μm in size from medium bathing a pure population of adult mouse cardiomyocytes. BIN1 microparticle release is proportional to actin stability and amount of T-tubule membrane folds. Compared to wild type cardiomyocytes, microparticle release is significantly reduced from myocytes with heterozygous deletion of Bin1 gene. These data indicate that cardiomyocyte membrane undergoes dynamic turnover, releasing T-tubule folds into blood as microparticles. Furthermore, plasma BIN1 can be used as a direct measure of cardiomyocyte health and reserve.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!