Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hox Transcription Factor Ultrabithorax Ib Physically and Genetically Interacts with Disconnected Interacting Protein 1, a Double-stranded RNA-binding Protein

Authors: Sarah E, Bondos; Daniel J, Catanese; Xin-Xing, Tan; Alicia, Bicknell; Likun, Li; Kathleen S, Matthews;

Hox Transcription Factor Ultrabithorax Ib Physically and Genetically Interacts with Disconnected Interacting Protein 1, a Double-stranded RNA-binding Protein

Abstract

The Hox protein family consists of homeodomain-containing transcription factors that are primary determinants of cell fate during animal development. Specific Hox function appears to rely on protein-protein interactions; however, the partners involved in these interactions and their function are largely unknown. Disconnected Interacting Protein 1 (DIP1) was isolated in a yeast two-hybrid screen of a 0-12-h Drosophila embryo library designed to identify proteins that interact with Ultrabithorax (Ubx), a Drosophila Hox protein. The Ubx.DIP1 physical interaction was confirmed using phage display, immunoprecipitation, pull-down assays, and gel retardation analysis. Ectopic expression of DIP1 in wing and haltere imaginal discs malforms the adult structures and enhances a decreased Ubx expression phenotype, establishing a genetic interaction. Ubx can generate a ternary complex by simultaneously binding its target DNA and DIP1. A large region of Ubx, including the repression domain, is required for interaction with DIP1. These more variable sequences may be key to the differential Hox function observed in vivo. The Ubx.DIP1 interaction prevents transcriptional activation by Ubx in a modified yeast one-hybrid assay, suggesting that DIP1 may modulate transcriptional regulation by Ubx. The DIP1 sequence contains two dsRNA-binding domains, and DIP1 binds double-stranded RNA with a 1000-fold higher affinity than either single-stranded RNA or double-stranded DNA. The strong interaction of Ubx with an RNA-binding protein suggests a wider range of proteins may influence Ubx function than previously appreciated.

Related Organizations
Keywords

Homeodomain Proteins, Models, Genetic, Reverse Transcriptase Polymerase Chain Reaction, Blotting, Western, RNA-Binding Proteins, DNA, Blotting, Northern, Precipitin Tests, Protein Structure, Tertiary, Drosophila melanogaster, Phenotype, Peptide Library, Animals, Drosophila Proteins, Drosophila, Cloning, Molecular, Gene Library, Glutathione Transferase, Protein Binding, RNA, Double-Stranded

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Top 10%
Average
gold