
doi: 10.1117/12.2285953
The laser speckle flowmetry methods based on laser speckle imaging (LSI) have attracted extensive attention recently because they can image brain blood flow with high spatiotemporal resolution. However, the poor transparency of the cranial bone limits the spatial resolution and the imaging depth. This problem has previously been addressed in animal studies by removing or thinning the skull to transparency. Nevertheless, a permanent and reliable solution has not yet been developed. Our study demonstrates a new method to address this challenge in biomedical imaging research, through the use of novel transparent cranial implants made from nanocrystalline yttria-stabilized zirconia (nc-YSZ). By applying LSI to underlying brain in an acute murine model, we show that spatial resolution and quantitative accuracy of blood flow measurement are improved when imaging through transparent nc-YSZ implants relative to native cranium. As such, these results provide the initial evidence supporting the feasibility of nc-YSZ transparent cranial implant as a clinically-viable long-term optical access for LSI on a chronically-recurring basis, thereby suppressing the need for repeated craniotomies. Successful development of this method has the potential to advance the study of neuropathologies or novel neuro-procedures in animal models where measurement of cerebral blood flow is of interest, such as blood flow changes during stroke, changes in blood flow due to functional activation, and spreading depolarization and its role in brain injuries, pathophysiology of migraine, and subarachnoid hemorrhage.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
