
Let Mn be the linear space of n-square matrices with real elements. For a matrix X = (xij) ∈ Mn the permanent is defined bywhere σ runs over all permutations of 1, 2, …, n. In (2) Marcus and May determine the nature of all linear transformations T of Mn into itself such that per T(X) = per X for all X ∈ Mn. For such a permanent preserver T, and for n < 3, there exist permutation matrices P, Q, and diagonal matrices D, L in Mn, such that per DL = 1 and eitherorHere X′ denotes the transpose of X. In the case n = 2, a different type of transformation is also possible.
linear algebra, polynomials, forms, theory of invariants
linear algebra, polynomials, forms, theory of invariants
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
