
doi: 10.3233/jifs-210216
Bipolarity plays a key role in different domains such as technology, social networking and biological sciences for illustrating real-world phenomenon using bipolar fuzzy models. In this article, novel concepts of bipolar fuzzy competition hypergraphs are introduced and discuss the application of the proposed model. The main contribution is to illustrate different methods for the construction of bipolar fuzzy competition hypergraphs and their variants. Authors study various new concepts including bipolar fuzzy row hypergraphs, bipolar fuzzy column hypergraphs, bipolar fuzzy k-competition hypergraphs, bipolar fuzzy neighborhood hypergraphs and strong hyperedges. Besides, we develop some relations between bipolar fuzzy k-competition hypergraphs and bipolar fuzzy neighborhood hypergraphs. Moreover, authors design an algorithm to compute the strength of competition among companies in business market. A comparative analysis of the proposed model is discuss with the existing models such bipolar fuzzy competition graphs and fuzzy competition hypergraphs.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
