Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RNAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
RNA
Article . 2008 . Peer-reviewed
Data sources: Crossref
RNA
Article . 2008
RNA
Article
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

General, rapid, and transcription-dependent fragmentation of nucleolar antigens in S. cerevisiae mRNA export mutants

Authors: Thomsen, Rune; Saguez, Cyril; Nasser, Tommy; Jensen, Torben Heick;

General, rapid, and transcription-dependent fragmentation of nucleolar antigens in S. cerevisiae mRNA export mutants

Abstract

In the yeast Saccharomyces cerevisiae, mutation of some effectors of mRNA nuclear export leads to the rapid accumulation of HSP104 RNA in transcription site-associated foci. We have screened the S. cerevisiae complement of viable gene deletion mutants for their inability to export HSP104 RNA. The 15 strains identified comprise deletions of components of the THO, Thp1p/Sac3p, and nuclear pore complexes. In all three mutant classes, retained RNA overlaps the HSP104 transcription site. Thus, an early block to HSP104 RNA export is general. Incubation of the identified deletion strains, as well as seven additional mutants, under conditions where mRNA export is blocked results in rapid dissipation of nucleolar protein and RNA constituents. Time course experiments show that dissipation of nucleolar antigens succeeds mRNA retention and is reversed when the load of nuclear mRNA ceases. Consistent with a causal role of excess nuclear mRNA, nucleolar morphology in an mRNA export mutant environment remains intact when transcription by RNA polymerase II is inhibited.

Related Organizations
Keywords

Antigens, Fungal, Saccharomyces cerevisiae Proteins, Base Sequence, Transcription, Genetic, Genes, Fungal, Active Transport, Cell Nucleus, Nuclear Proteins, RNA, Fungal, Saccharomyces cerevisiae, Mutation, RNA Polymerase II, RNA, Messenger, Oligonucleotide Probes, Cell Nucleolus, Gene Deletion, Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Average
Top 10%
bronze