Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2006
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2006 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field

Authors: Clifford J. Tabin; José Rivera-Feliciano;

Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field

Abstract

A hallmark of heart-valve development is the swelling and deposition of extracellular matrix in the heart-valve region. Only myocardium overlying this region can signal to underlying endothelium and cause it to lose cell-cell contacts, delaminate, and invade the extracellular space abutting myocardium and endocardium to form endocardial cushions (EC) in a process known as epithelial to mesenchymal transformation (EMT). The heart-valve myocardium expresses bone morphogenetic protein-2 (Bmp2) coincident with development of valve mesenchyme. BMPs belong to the transforming growth factor beta superfamily (TGF-beta) and play a wide variety of roles during development. We show that conditional ablation of Bmp2 in cardiac progenitors results in cell fate changes in which the heart-valve region adopts the identity of differentiated chamber myocardium. Moreover, Bmp2-deficient hearts fail to induce production and deposition of matrix at the heart-valve-forming region, resulting in the inability of the endothelium to swell and impairing the development of ECs. Furthermore, in collagen invasion assays, Bmp2 mutant endothelium is incapable of undergoing EMT, and addition of BMP2 protein to mutant heart explants rescues this phenotype. Our results demonstrate that Bmp2 is both necessary and sufficient to specify a field of cardiac progenitor cells as the heart-valve-inducing region amid developing atria and ventricles.

Related Organizations
Keywords

Bmp2, Bone Morphogenetic Protein 2, Heart development, Epithelium, Bone morphogenetic protein, Mesoderm, Mice, Cardiac development, Transforming Growth Factor beta, Animals, Endocardial cushion, Cell Lineage, Endothelium, Molecular Biology, Embryonic Induction, Cardiac morphogenesis, Myocardium, Stem Cells, Gene Expression Regulation, Developmental, Cell Biology, Heart Valves, Bone Morphogenetic Proteins, epithelial–mesenchymal transition, EMT, Atrioventricular canal, AVC, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    154
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
154
Top 10%
Top 10%
Top 1%
hybrid