
doi: 10.18720/mce.87.6
Теория тонкостенных стержней приобрела большую важность в связи с широким использованием легких стальных тонкостенных конструкций. Традиционно, при расчете тонкостенных стержней используют две разные теории: для стержней открытого профиля и стержней замкнутого профиля. При решении задач методом конечных элементов это неудобно, так как приходится строить разные конечные элементы для разных стержней. В 2005 г. В.И. Сливкером была разработана полусдвиговая теория расчета тонкостенных стержней, которая позволяет единым образом решать задачи как для стержней открытого, так и замкнутого профилей. В рамках этой теории в данной работе исследовано применение метода конечных элементов для решения задач устойчивости тонкостенных стержней и построена геометрическая матрица жесткости. Показано, что построенное конечно-элементное решение сходится к точному при увеличении количества конечных элементов. Проведено сравнение полученных решений с критическими силами, вычисленными по классической формуле Эйлера. Сделан вывод о том, что учет тонкостенности сечения может привести к значительному уменьшению критических сил, особенно для стержней открытого профиля.
The theory of thin-walled bars is important because light steel thin-walled structures are widely used. Traditionally, in calculations two theories are used: theory for open-profile and closed profile bars. The calculations are difficult, because different finite elements are used for different bar types. In 2005 V.I. Slivker worked out a semi-shear theory, which is suitable for thin-walled bars of open sections and closed sections. Similarly, this article presents the research on finite element modeling for the stability problems of thin-walled bars using the same theory to the geometric stiffness matrix. It was shown that the FEM solution converges to the exact one as the number of the finite elements increases. The numeral solutions were compared to critical forces obtained by the classical Euler formula. It was found that using the cross-sections as the thin-walled ones can reduce the critical force, especially for the open cross-sections.
Building construction, finite element method, semi-shear theory, устойчивость, stability, Engineering (General). Civil engineering (General), geometric stiffness matrix, геометрическая матрица жесткости, метод конечных элементов, тонкостенный стержень, полусдвиговая теория, TA1-2040, TH1-9745, thin-walled bar
Building construction, finite element method, semi-shear theory, устойчивость, stability, Engineering (General). Civil engineering (General), geometric stiffness matrix, геометрическая матрица жесткости, метод конечных элементов, тонкостенный стержень, полусдвиговая теория, TA1-2040, TH1-9745, thin-walled bar
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
