Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy & Astr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy & Astrophysics
Article . 2021
License: unspecified
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Astronomy & Astrophysics
Article . 2021 . Peer-reviewed
License: EDP Sciences Copyright and Publication Licensing Policy
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequencies, chaos, and resonances: A study of orbital parameters of nearby thick-disc and halo stars

A study of orbital parameters of nearby thick-disc and halo stars
Authors: Helmer H. Koppelman; Jorrit H. J. Hagen; Amina Helmi;

Frequencies, chaos, and resonances: A study of orbital parameters of nearby thick-disc and halo stars

Abstract

Aims. We study the distribution of nearby thick-disc and halo stars in subspaces defined by their characteristic orbital parameters. Our aim is to establish the origin of the structure reported in particular in the Rmax − zmax space. Methods. To this end, we computed the orbital parameters and frequencies of stars for a generic and for a Stäckel Milky Way potential. Results. We find that for both the thick-disc and halo populations, very similar prominent substructures are apparent for the generic Galactic potential, while no substructure is seen for the Stäckel model. This indicates that the origin of these features is not merger-related, but due to the non-integrability of the generic potential. This conclusion is strengthened by our frequency analysis of the orbits of stars, which reveals the presence of prominent resonances, with ∼30% of the halo stars associated with resonance families. In fact, the stars in resonances define the substructures seen in the spaces of characteristic orbital parameters. Intriguingly, we find that some stars in our sample and in debris streams are on the same resonance as the Sagittarius dwarf. Conclusions. Our study constitutes a step towards disentangling the imprint of merger debris from substructures driven by internal dynamics. Given their prominence, these resonant-driven overdensities could potentially be useful in constraining the exact form of the Galactic potential.

Country
Netherlands
Keywords

Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Galaxy: structure, Galaxy: kinematics and dynamics, Astrophysics - Astrophysics of Galaxies, Galaxy: halo

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid