
Ubiquitin ligases, together with their cognate ubiquitin-conjugating enzymes, are responsible for the ubiquitylation of proteins, a process that regulates a myriad of eukaryotic cellular functions. The first cullin-RING ligase discovered, yeast SCF(Cdc4), functions with the conjugating enzyme Cdc34 to regulate the cell cycle. Cdc34 orthologs are notable for their highly acidic C-terminal extension. Here we confirm that the Cdc34 acidic C-terminal tail has a role in Cdc34 binding to SCF(Cdc4) and makes a major contribution to the submicromolar K(m) of Cdc34 for SCF(Cdc4). Moreover, we demonstrate that a key functional property of the tail is its acidity. Our analysis also uncovers an unexpected new function for the acidic tail in promoting catalysis. We demonstrate that SCF is functional when Cdc34 is fused to the C terminus of Cul1 and that this fusion retains partial function even when the acidic tail has been deleted. The Cdc34-SCF fusion proteins that lack the acidic tail must interact in a fundamentally different manner than unfused SCF and wild type Cdc34, demonstrating that distinct mechanisms of E2 recruitment to E3, as is seen in nature, can sustain substrate ubiquitylation. Finally, a search of the yeast proteome uncovered scores of proteins containing highly acidic stretches of amino acids, hinting that electrostatic interactions may be a common mechanism for facilitating protein assembly.
570, SKP Cullin F-Box Protein Ligases, Saccharomyces cerevisiae Proteins, Protein Synthesis, Post-Translational Modification, and Degradation, Recombinant Fusion Proteins, Cell Cycle, Ubiquitination, Ubiquitin-Protein Ligase Complexes, Saccharomyces cerevisiae, Cullin Proteins, Anaphase-Promoting Complex-Cyclosome, Protein Structure, Tertiary, Ubiquitin-Conjugating Enzymes, Humans
570, SKP Cullin F-Box Protein Ligases, Saccharomyces cerevisiae Proteins, Protein Synthesis, Post-Translational Modification, and Degradation, Recombinant Fusion Proteins, Cell Cycle, Ubiquitination, Ubiquitin-Protein Ligase Complexes, Saccharomyces cerevisiae, Cullin Proteins, Anaphase-Promoting Complex-Cyclosome, Protein Structure, Tertiary, Ubiquitin-Conjugating Enzymes, Humans
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
