Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cell Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Differential dissociation of chromatin digests: a novel approach revealing a hierarchy of DNA-protein interactions within chromatin domains

Authors: A V, Lichtenstein; M M, Zaboikin; N I, Sjakste; R P, Alechina;

Differential dissociation of chromatin digests: a novel approach revealing a hierarchy of DNA-protein interactions within chromatin domains

Abstract

ABSTRACT We describe here a novel approach to the dissection of chromatin structure by extracting DNA fragments from digested nuclei irreversibly immobilized (via proteins) on Celite columns. Three successive gradients (NaCl, LiCl-urea, temperature) are used to release three families of DNA fragments: namely, the ‘DNA adherence’ classes DNA-0, DNA-I and DNA-II, respectively. This ‘protein image’ DNA chromatography separates DNA fragments in accordance with the tightness of their bonds with proteins in situ. There are at least two DNA—skeleton attachment sites differing from each other by their resistance to the dissociating agents used as well as their susceptibility to DNAase I and Si nuclease treatments, DNA cross-linking and single-stranded breaks. Several lines of evidence show a specific, topological rather than chemical, DNA-protein linkage at the tight attachment site. A hierarchy of chromatin loops demarcated by these attachment sites was determined. The technique described is generally applicable and can be used both to probe DNA-protein interactions and to map specific DNA sequences within the chromatin domain.

Keywords

Chromatography, Humans, Nucleic Acid Conformation, Proteins, DNA, Cell Fractionation, Chromatin, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!