Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Applied Sciencesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2025
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Separation of Body and Surface Wave Background Noise and Passive Seismic Interferometry Based on Synchrosqueezed Continuous Wavelet Transform

Authors: Xiaolong Li; Fengjiao Zhang; Zhuo Xu; Xiangbo Gong;

Separation of Body and Surface Wave Background Noise and Passive Seismic Interferometry Based on Synchrosqueezed Continuous Wavelet Transform

Abstract

Passive seismic interferometry is a technique that reconstructs virtual seismic records using ambient noise, such as random noise or microseisms. The ambient noise in passive seismic data contains rich information, with surface waves being useful for the inversion of shallow subsurface structures, while body waves are employed for deep-layer inversion. However, due to the low signal-to-noise ratio in actual passive seismic data, different types of seismic waves mix together, making them difficult to distinguish. This issue not only affects the dispersion measurements of surface waves but also interferes with the imaging accuracy of reflected waves. Therefore, it is crucial to extract the target waves from passive source data. In practical passive seismic data, body wave noise and surface wave noise often overlap in frequency bands, making it challenging to separate them effectively using conventional methods. The synchrosqueezed continuous wavelet transform, as a high-resolution time–frequency analysis method, can effectively capture the variations in frequency of passive seismic data. This study performs time–frequency analysis of passive seismic data using synchrosqueezed continuous wavelet transform. It combines wavelet thresholding and Gaussian filtering to separate body wave noise from surface wave noise. Furthermore, wavelet cross-correlation is applied to separately obtain high-quality virtual seismic records for both surface waves and body waves.

Related Organizations
Keywords

Technology, synchrosqueezed continuous wavelet transform, QH301-705.5, T, Physics, QC1-999, wavelet thresholding, cross-correlation, Engineering (General). Civil engineering (General), seismic interferometry, Chemistry, TA1-2040, Biology (General), QD1-999

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold