
arXiv: 1808.08360
Orthogonal time frequency space (OTFS) modulation was shown to provide significant error performance advantages over orthogonal frequency division multiplexing (OFDM) in delay--Doppler channels. In order to detect OTFS modulated data, the channel impulse response needs to be known at the receiver. In this paper, we propose embedded pilot-aided channel estimation schemes for OTFS. In each OTFS frame, we arrange pilot, guard, and data symbols in the delay--Doppler plane to suitably avoid interference between pilot and data symbols at the receiver. We develop such symbol arrangements for OTFS over multipath channels with integer and fractional Doppler shifts, respectively. At the receiver, channel estimation is performed based on a threshold method and the estimated channel information is used for data detection via a message passing (MP) algorithm. Thanks to our specific embedded symbol arrangements, both channel estimation and data detection are performed within the same OTFS frame with a minimum overhead. We compare by simulations the error performance of OTFS using the proposed channel estimation and OTFS with ideally known channel information and observe only a marginal performance loss. We also demonstrate that the proposed channel estimation in OTFS significantly outperforms OFDM with known channel information. Finally, we present extensions of the proposed schemes to MIMO and multi-user uplink/downlink.
10 papes, submitted to the IEEE journal for possible publication
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 396 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
