Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2004
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage

Authors: Christina Lillesaar; Kaj Fried;

Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage

Abstract

Although neurite attracting factors are present in the developing dental pulp and trigeminal ganglion (TG) axons can respond to such factors, nerve fibres do not enter the tooth pulp until a late developmental stage compared with surrounding tissues supplied by the TG. This suggests that the dental pulp secretes neurite growth inhibitory molecules. Semaphorins represent one group of substances, which can inhibit/repel growing neurites. The aims of the present study were to investigate if dental tissue explants inhibit/repel neurite growth from TGs at some developmental stages in vitro, and if so, to seek evidence for or against a participation of semaphorins in that interaction. By co-culturing mandibular or dental epithelial and mesenchymal tissue explants and TGs in collagen gels, we found that embryonic day 11 (E11) mandibular and E13 dental mesenchymal explants repel neurites from corresponding TGs. Repulsion was replaced by attraction if tissues from late embryonic or early postnatal mice (E17-postnatal day 5) were used. Using semi-quantitative reverse transcription/polymerase chain reaction we showed that a number of semaphorins were expressed by tooth-related mesenchyme collected from embryonic and postnatal mice. The expression of some semaphorins (3A, 3C, 3F, 4F, 5B, 6A, 6B and 6C) was high early in development and then decreased in a temporal pattern that correlated with neurite inhibitory/repulsive effects of dental mesenchyme observed in co-cultures. The expression of other semaphorins increased with development (3B, 4A and 7A), whilst others varied irregularly or remained at a fairly constant level (3E, 4B, 4C, 4D, 4G and 5A). Immunohistochemistry was used to determine if tooth-related nerve fibres possess neuropilins. This revealed that axons surrounding embryonic tooth buds express neuropilin-1, but not neuropilin-2. In postnatal teeth, nerve fibres located within the tooth pulp were immunonegative for neuropilin-1 and neuropilin-2. We conclude that developing mandibular/dental mesenchyme can inhibit/repel neurite growth in vitro. Our results support the hypothesis that semaphorins may be involved in this interaction.

Related Organizations
Keywords

Reverse Transcriptase Polymerase Chain Reaction, Gene Expression Regulation, Developmental, Tooth Germ, Mandible, Semaphorins, Embryo, Mammalian, Immunohistochemistry, Coculture Techniques, Epithelium, Mesoderm, Mice, Animals, Newborn, Trigeminal Ganglion, Neurites, Animals, Odontogenesis, Nerve Growth Factors, Tooth, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?