
Principal component analysis (PCA) is one of the successful dimensionality reduction approaches for color face recognition. For various PCA methods, the experiments show that the contribution of eigenvectors is different and different weights of eigenvectors can cause different effects. Based on this, a modified and simplified color two-dimensional quaternion principal component analysis (M2D-QPCA) method is proposed along the framework of the color two-dimensional quaternion principal component analysis (2D-QPCA) method and the improved two-dimensional quaternion principal component analysis (2D-GQPCA) method. The shortcomings of 2D-QPCA are corrected and the CPU time of 2D-GQPCA is reduced. The experiments on two real face data sets show that the accuracy of M2D-QPCA is better than that of 2D-QPCA and other PCA-like methods and the CPU time of M2D-QPCA is less than that of 2D-GQPCA.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
