Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Croatian Research Information System
Part of book or chapter of book . 2016
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Frequency Domain and Time Domain Response of the Horizontal Grounding Electrode Using the Antenna Theory Approach

Authors: Poljak, Dragan;

Frequency Domain and Time Domain Response of the Horizontal Grounding Electrode Using the Antenna Theory Approach

Abstract

Analysis of grounding systems is rather important issue in the design of lightning protection systems (LPS). Particularly important application is related to LPS for environmentally attractive wind turbines. In general, analysis of grounding systems can be carried out by using the transmission line (TL) model [1, 5, 6] or the full wave model, also referred to as the antenna theory (AT) model (AM) [3, 4, 11]. The latter is considered to be the rigorous one, while the principal advantage of TL approach is simplicity [14]. Both TL and AT models can be formulated in either frequency domain (FD) or time domain (TD) [9]. This paper reviews FD-AT and TD-AT approach, respectively, for the study of horizontal grounding electrode being an important component in many realistic grounding systems of complex shape. The key-parameter in the study of horizontal grounding electrode is the equivalent current distribution along the electrode. Once the current distribution along the electrode is determined, other parameters of interest, such as voltage distribution or transient impedance, can be calculated. Within the AT approach the effect of an earth-air interface is taken into account via the corresponding reflection coefficient thus avoiding the rigorous approach based on the Sommerfeld integrals. The space-frequency and space-time integro-differential expressions arising from the AT model are numerically treated by means of the Galerkin–Bubnov scheme of the Boundary Element Method (GB-IBEM) [9]. Some illustrative FD and TD numerical results for the current distribution and subsequently the scattered voltage along the electrode are obtained.

Keywords

Transient response, Numerical solution, Frequency domain analysis, Time domain analysis, Grounding systems, Pocklington integro-differential equation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!