
Protein kinase C betaII (PKCbetaII) is induced early during colon carcinogenesis. Transgenic mice expressing elevated PKCbetaII in the colonic epithelium (transgenic PKCbetaII mice) exhibit hyperproliferation and enhanced colon carcinogenesis. Here we demonstrate that nullizygous PKCbeta (PKCbetaKO) mice are highly resistant to azoxymethane (AOM)-induced preneoplastic lesions, aberrant crypt foci. However, reexpression of PKCbetaII in the colon of PKCbetaKO mice by transgenesis restores susceptibility to AOM-induced colon carcinogenesis. Expression of human PKCbetaII in rat intestinal epithelial (RIE) cells induces expression of endogenous rat PKCbetaII mRNA and protein. Induction of PKCbetaII is dependent upon catalytically active PKCbetaII and does not appear to involve changes in alternative splicing of the PKCbeta gene. Two human PKCbeta promoter constructs are activated by expression of PKCbetaII in RIE cells. Both PKCbeta promoter activity and PKCbetaII mRNA levels are inhibited by the MEK1 and -2 inhibitor U0126, but not the Cox-2 inhibitor celecoxib in RIE/PKCbetaII cells. PKCbeta promoter activity correlates directly with expression of endogenous PKCbetaII mRNA and protein in HT29 and HCT116 human colon cancer cell lines. PKCbeta promoter activity and PKCbetaII mRNA expression in HCT116 cells are inhibited by the selective PKCbeta inhibitor LY317615 and by U0126, demonstrating autoregulation of PKCbetaII expression. Transgenic PKCbetaII mice exhibit specific induction of endogenous PKCbetaII, but not its splice variant PKCbetaI, in the colonic epithelium in vivo. Taken together, our results demonstrate that 1) expression of PKCbetaII in the colonic epithelium is both necessary and sufficient to confer susceptibility to AOM-induced colon carcinogenesis in transgenic mice, 2) PKCbetaII regulates its own expression in RIE and human colon cancer cells in vitro and in the colonic epithelium in vivo, and 3) PKCbetaII autoregulation is mediated through a MEK-dependent signaling pathway in RIE/PKCbetaII and HCT116 colon cancer cells.
Colon, HCT116 Cells, Gene Expression Regulation, Enzymologic, Rats, Mice, Inbred C57BL, Mice, Colonic Neoplasms, Protein Kinase C beta, Animals, Homeostasis, Humans, Intestinal Mucosa, Promoter Regions, Genetic, HT29 Cells, Protein Kinase C
Colon, HCT116 Cells, Gene Expression Regulation, Enzymologic, Rats, Mice, Inbred C57BL, Mice, Colonic Neoplasms, Protein Kinase C beta, Animals, Homeostasis, Humans, Intestinal Mucosa, Promoter Regions, Genetic, HT29 Cells, Protein Kinase C
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
